POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name		
Modeling of systems in t	he food industry	
Course		
Field of study		Year/Semester
Construction and Exploitation of Means of Transport		2/3
Area of study (specialization)		Profile of study
Food Industry Machines and Refrigeration		general academic
Level of study		Course offered in
Second-cycle studies		Polish
Form of study		Requirements
full-time		compulsory
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
30	30	0
Tutorials	Projects/seminars	
0	0	
Number of credit points	i	
4		
Lecturers		
Responsible for the course/lecturer: Respons		sible for the course/lecturer:
dr hab. inż. Jan Szczepan	iak	
email: jan.szczepaniak@	put.poznan.pl	
tel. 18712238		
Faculty of Civil and Trans	sport Engineering	
ul. Piotrowo 3, 60-965 P	oznań	

Prerequisites

Knowledge: Has basic knowledge of mechanics, fluid mechanics, the basics of machine design, machine construction, thermodynamics

Social competences: Is aware of responsibility for his own work.

Skills: Can make a CAD-3D model of the machine. Can perform basic calculations of basic elements and assemblies of machines, including shafts, bearings, clutches, brakes and gears. Has theoretical knowledge in the field of thermodynamics and numerical modeling and analysis methods

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

Mastering theoretical and practical knowledge in the field of engineering modeling methods and engineering analyzes regarding flows occurring in virtual models of food machines.

Course-related learning outcomes

Knowledge

1. Has extended knowledge in the field of computer science, concerning computer programming and engineering calculation programs in the field of computer simulation of physical systems.

2. Knows contemporary engineering methods of computer graphics and theoretical foundations of engineering calculations using the finite element method.

3. Has extended knowledge of the strength of materials in the field of nonlinear models, fracture and fatigue strength, calculations of statically indeterminate structures, structural stability.

Skills

1. Can use a popular numerical calculation system to program a simple system simulation task with a small number of degrees of freedom.

2. Can write a simple computer program with the use of modern RAD environments in a known language for calculations of structure optimization with the use of assimilated elementary numerical methods.

3. Can make a medium complex design of a working machine or its assembly using modern CAD tools, including tools for spatial modeling of machines and calculations using the finite element method.

Social competences

1. Is ready to recognize the importance of knowledge in solving cognitive and practical problems and to consult experts in case of difficulties in solving the problem on its own.

2. Is willing to think and act in an entrepreneurial manner.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Current control of the mastery of the lecture content. Written exam in the theory of flow modeling and engineering analyzes including the solution of a practical problem.

Programme content

The structure of the solid model for the purposes of running computer simulations in terms of generating flow phenomena. Influence of the design features of the food machine working unit on the parameters of the raw materials processing.

Teaching methods

1. Lecture with multimedia presentation.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Practical method - in the form of auditorium exercises at computer stations.

Bibliography

Basic

- 1. Bathe K.J., Finite Element Procedures, Prentice Hall, New Jersey 1996
- 2. Gryboś R., Podstawy mechaniki płynów, PWN, Warszawa 1989.
- 3. Zienkiewicz O.C., Metoda elementów skończonych, Arkady, Warszawa 1972
- 4. X-FLOW system. User?s Manual

Additional

1. Ascher U. M., Petzold L. R. (1998) Computer methods for Ordinary Differential Equations and Difference-Algebraic Equations, SIAM, Philadelphia

- 2. Stoer J., (1979): Wstęp do metod numerycznych. Tom I, PWN Warszawa;
- 3. Stoer J., Bulirsch R., (1980): Wstęp do metod numerycznych Tom II, PWN Warszawa
- 4. Chaudhry H. F. (2008): Open Channel Flow. Springer

Breakdown of average student's workload

	Hours	ECTS
Total workload	120	4,0
Classes requiring direct contact with the teacher	60	2,0
Student's own work (literature studies, preparation for	60	2,0
laboratory classes/tutorials, preparation for tests/exam,		
execution of reports) ¹		

¹ delete or add other activities as appropriate